Deep Learning and AI

Top 10 Hugging Face Models for TensorFlow

March 25, 2022 • 23 min read

SPC-blog-Huggingface-top10-models.png

A Look at Popular Hugging Face Models for TensorFlow

Over the past few years Hugging Face has exploded onto the AI scene, providing a backbone to 1000s of organizations who use Hugging Face's open source resources to build, train and deploy state of the art models for Natural Language Processing (NLP), Computer Vision (CV), and other machine learning-based projects.

Their huge community and open source ecosystem of tools, datasets, pre-trained models, and more save researchers and companies countless hours building their own tools to drive innovation in the AI industry forward.

In this blog post we will take a look at the top 10 Hugging Face models for TensorFlow, and show you how to use their model search to find other pre-trained models based on your specific use case and the library (or libraries) you are using.

Hugging Face Models Search

Hugging Face provides an easy way to search for the models that can fit your use case, and you can easily apply filters to narrow your search.

Filters include: Tasks, Libraries, Datasets, Languages, Licenses, and Other.

hugging-face-search.png

Simply click on any item in the filter sections to refine your search! So, let's take a look at their top 10 models for TensorFlow users.

10 Popular TensorFlow Hugging Face Models

#1: DistilGPT2

The  DistilGPT2 model is a Natural Language Processing (NLP) Model implemented in Transformer library, generally using the Python programming language.

It is pretrained with the supervision of GPT2 (the smallest version of GPT2) on OpenWebTextCorpus, a reproduction of OpenAI's WebText dataset. The model has 6 layers, 768 dimension and 12 heads, totalizing 82M parameters (compared to 124M parameters for GPT2). On average, DistilGPT2 is two times faster than GPT2.

#2: BERT base model (uncased)

This is a pretrained model on English language using a masked language modeling (MLM) objective. This model is uncased meaning it does not make a difference between english and English.

BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives:

  • Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence.
  • Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not.

This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs.

Intended uses & limitations

You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task.

Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at a model like GPT2.

How to use

You can use this model directly with a pipeline for masked language modeling:

>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-base-uncased')
>>> unmasker("Hello I'm a [MASK] model.")

[{'sequence': "[CLS] hello i'm a fashion model. [SEP]",
  'score': 0.1073106899857521,
  'token': 4827,
  'token_str': 'fashion'},
 {'sequence': "[CLS] hello i'm a role model. [SEP]",
  'score': 0.08774490654468536,
  'token': 2535,
  'token_str': 'role'},
 {'sequence': "[CLS] hello i'm a new model. [SEP]",
  'score': 0.05338378623127937,
  'token': 2047,
  'token_str': 'new'},
 {'sequence': "[CLS] hello i'm a super model. [SEP]",
  'score': 0.04667217284440994,
  'token': 3565,
  'token_str': 'super'},
 {'sequence': "[CLS] hello i'm a fine model. [SEP]",
  'score': 0.027095865458250046,
  'token': 2986,
  'token_str': 'fine'}]

Here is how to use this model to get the features of a given text in TensorFlow:

from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = TFBertModel.from_pretrained("bert-base-uncased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)

#3: GPT-2

GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion, using a causal language modeling (CLM) objective. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences.

More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token i only uses the inputs from 1 to i but not the future tokens.

This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt.

Intended uses & limitations

You can use the raw model for text generation or fine-tune it to a downstream task. 

How to use

You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility:

>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='gpt2')
>>> set_seed(42)
>>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5)

[{'generated_text': "Hello, I'm a language model, a language for thinking, a language for expressing thoughts."},
 {'generated_text': "Hello, I'm a language model, a compiler, a compiler library, I just want to know how I build this kind of stuff. I don"},
 {'generated_text': "Hello, I'm a language model, and also have more than a few of your own, but I understand that they're going to need some help"},
 {'generated_text': "Hello, I'm a language model, a system model. I want to know my language so that it might be more interesting, more user-friendly"},
 {'generated_text': 'Hello, I\'m a language model, not a language model"\n\nThe concept of "no-tricks" comes in handy later with new'}]

Here is how to use this model to get the features of a given text in TensorFlow:

from transformers import GPT2Tokenizer, TFGPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = TFGPT2Model.from_pretrained('gpt2')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)

#4: DistilBERT base model (uncased)

DistilBERT is a transformers model, smaller and faster than BERT, which was pretrained on the same corpus in a self-supervised fashion, using the BERT base model as a teacher. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts using the BERT base model. More precisely, it was pretrained with three objectives:

  • Distillation loss: the model was trained to return the same probabilities as the BERT base model.
  • Masked language modeling (MLM): this is part of the original training loss of the BERT base model. When taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence.
  • Cosine embedding loss: the model was also trained to generate hidden states as close as possible as the BERT base model.

This way, the model learns the same inner representation of the English language than its teacher model, while being faster for inference or downstream tasks.

Intended uses & limitations

You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task.

Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at a model like GPT2.

How to use

You can use this model directly with a pipeline for masked language modeling:

>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='distilbert-base-uncased')
>>> unmasker("Hello I'm a [MASK] model.")

[{'sequence': "[CLS] hello i'm a role model. [SEP]",
  'score': 0.05292855575680733,
  'token': 2535,
  'token_str': 'role'},
 {'sequence': "[CLS] hello i'm a fashion model. [SEP]",
  'score': 0.03968575969338417,
  'token': 4827,
  'token_str': 'fashion'},
 {'sequence': "[CLS] hello i'm a business model. [SEP]",
  'score': 0.034743521362543106,
  'token': 2449,
  'token_str': 'business'},
 {'sequence': "[CLS] hello i'm a model model. [SEP]",
  'score': 0.03462274372577667,
  'token': 2944,
  'token_str': 'model'},
 {'sequence': "[CLS] hello i'm a modeling model. [SEP]",
  'score': 0.018145186826586723,
  'token': 11643,
  'token_str': 'modeling'}]

Here is how to use this model to get the features of a given text in TensorFlow:

from transformers import DistilBertTokenizer, TFDistilBertModel
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
model = TFDistilBertModel.from_pretrained("distilbert-base-uncased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)

#5: RoBERTa base model

RoBERTa is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts.

More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence.

This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs.

Intended uses & limitations

You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.

Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at a model like GPT2.

How to use

You can use this model directly with a pipeline for masked language modeling:

>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='roberta-base')
>>> unmasker("Hello I'm a <mask> model.")

[{'sequence': "<s>Hello I'm a male model.</s>",
  'score': 0.3306540250778198,
  'token': 2943,
  'token_str': 'Ä male'},
 {'sequence': "<s>Hello I'm a female model.</s>",
  'score': 0.04655390977859497,
  'token': 2182,
  'token_str': 'Ä female'},
 {'sequence': "<s>Hello I'm a professional model.</s>",
  'score': 0.04232972860336304,
  'token': 2038,
  'token_str': 'Ä professional'},
 {'sequence': "<s>Hello I'm a fashion model.</s>",
  'score': 0.037216778844594955,
  'token': 2734,
  'token_str': 'Ä fashion'},
 {'sequence': "<s>Hello I'm a Russian model.</s>",
  'score': 0.03253649175167084,
  'token': 1083,
  'token_str': 'Ä Russian'}]

Here is how to use this model to get the features of a given text in TensorFlow:

from transformers import RobertaTokenizer, TFRobertaModel
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
model = TFRobertaModel.from_pretrained('roberta-base')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)

#6: DistilBERT base uncased finetuned SST-2

This model is a fine-tune checkpoint of DistilBERT-base-uncased, fine-tuned on SST-2. This model reaches an accuracy of 91.3 on the dev set (for comparison, Bert bert-base-uncased version reaches an accuracy of 92.7).

Fine-tuning hyper-parameters

  • learning_rate = 1e-5
  • batch_size = 32
  • warmup = 600
  • max_seq_length = 128
  • num_train_epochs = 3.0

#7: BERT base model (cased)

This is a pretrained model on English language using a masked language modeling (MLM) objective. This model is case-sensitive: it makes a difference between english and English.

BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives:

  • Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence.
  • Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not.

This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs.

Intended uses & limitations

You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task.

Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at a model like GPT2.

How to use

You can use this model directly with a pipeline for masked language modeling:

>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-base-cased')
>>> unmasker("Hello I'm a [MASK] model.")

[{'sequence': "[CLS] Hello I'm a fashion model. [SEP]",
  'score': 0.09019174426794052,
  'token': 4633,
  'token_str': 'fashion'},
 {'sequence': "[CLS] Hello I'm a new model. [SEP]",
  'score': 0.06349995732307434,
  'token': 1207,
  'token_str': 'new'},
 {'sequence': "[CLS] Hello I'm a male model. [SEP]",
  'score': 0.06228214129805565,
  'token': 2581,
  'token_str': 'male'},
 {'sequence': "[CLS] Hello I'm a professional model. [SEP]",
  'score': 0.0441727414727211,
  'token': 1848,
  'token_str': 'professional'},
 {'sequence': "[CLS] Hello I'm a super model. [SEP]",
  'score': 0.03326151892542839,
  'token': 7688,
  'token_str': 'super'}]

Here is how to use this model to get the features of a given text in TensorFlow:

from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
model = TFBertModel.from_pretrained("bert-base-cased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)

#8: RoBERTa large model

RoBERTa is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts.

More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence.

This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs.

This model is case-sensitive: it makes a difference between english and English.

Intended uses & limitations

You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.

Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at a model like GPT2.

How to use

You can use this model directly with a pipeline for masked language modeling:

>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='roberta-large')
>>> unmasker("Hello I'm a <mask> model.")

[{'sequence': "<s>Hello I'm a male model.</s>",
  'score': 0.3317350447177887,
  'token': 2943,
  'token_str': 'Ä male'},
 {'sequence': "<s>Hello I'm a fashion model.</s>",
  'score': 0.14171843230724335,
  'token': 2734,
  'token_str': 'Ä fashion'},
 {'sequence': "<s>Hello I'm a professional model.</s>",
  'score': 0.04291723668575287,
  'token': 2038,
  'token_str': 'Ä professional'},
 {'sequence': "<s>Hello I'm a freelance model.</s>",
  'score': 0.02134818211197853,
  'token': 18150,
  'token_str': 'Ä freelance'},
 {'sequence': "<s>Hello I'm a young model.</s>",
  'score': 0.021098261699080467,
  'token': 664,
  'token_str': 'Ä young'}]

Here is how to use this model to get the features of a given text in TensorFlow:

from transformers import RobertaTokenizer, TFRobertaModel
tokenizer = RobertaTokenizer.from_pretrained('roberta-large')
model = TFRobertaModel.from_pretrained('roberta-large')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)

#9: BERT base Japanese (character tokenization)

This is a BERT model pretrained on texts in the Japanese language. This version of the model processes input texts with word-level tokenization based on the IPA dictionary, followed by character-level tokenization.

Model architecture

The model architecture is the same as the original BERT base model; 12 layers, 768 dimensions of hidden states, and 12 attention heads.

Training Data

The model is trained on Japanese Wikipedia as of September 1, 2019. To generate the training corpus, WikiExtractor is used to extract plain texts from a dump file of Wikipedia articles. The text files used for the training are 2.6GB in size, consisting of approximately 17M sentences.

Tokenization

The texts are first tokenized by MeCab morphological parser with the IPA dictionary and then split into characters. The vocabulary size is 4000.

Training

The model is trained with the same configuration as the original BERT; 512 tokens per instance, 256 instances per batch, and 1M training steps.

#10: Wav2Vec2-Base-960h

Wav2vec 2.0, uses self-supervision to push the boundaries by learning from unlabeled training data to enable speech recognition systems for many more languages, dialects, and domains. With just one hour of labeled training data, wav2vec 2.0 outperforms the previous state of the art on the 100-hour subset of the LibriSpeech benchmark, using 100 times less labeled data.

Similar to the Bidirectional Encoder Representations from Transformers (BERT), a wav2vec 2.0 model is trained by predicting speech units for masked parts of the audio. A major difference is that speech audio is a continuous signal that captures many aspects of the recording with no clear segmentation into words or other units. Wav2vec 2.0 tackles this issue by learning basic units that are 25ms long to enable learning of high-level contextualized representations. These units are then used to describe many different speech audio recordings and make wav2vec more robust. This enables us to build speech recognition systems that can outperform the best semi-supervised methods, even with 100x less labeled training data.

The base model is pretrained and fine-tuned on 960 hours of Librispeech on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.

Usage

To transcribe audio files the model can be used as a standalone acoustic model as follows:

 from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
 from datasets import load_dataset
 import soundfile as sf
 import torch
 
 # load model and tokenizer
 processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
 model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
     
 # load dummy dataset and read soundfiles
 ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
 
 # tokenize
 input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values  # Batch size 1
 
 # retrieve logits
 logits = model(input_values).logits
 
 # take argmax and decode
 predicted_ids = torch.argmax(logits, dim=-1)
 transcription = processor.batch_decode(predicted_ids)

Evaluation

This code snippet shows how to evaluate facebook/wav2vec2-base-960h on LibriSpeech's "clean" and "other" test data.

from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import soundfile as sf
import torch
from jiwer import wer


librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")

model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda")
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")

def map_to_array(batch):
    speech, _ = sf.read(batch["file"])
    batch["speech"] = speech
    return batch

librispeech_eval = librispeech_eval.map(map_to_array)

def map_to_pred(batch):
    input_values = processor(batch["speech"], return_tensors="pt", padding="longest").input_values
    with torch.no_grad():
        logits = model(input_values.to("cuda")).logits

    predicted_ids = torch.argmax(logits, dim=-1)
    transcription = processor.batch_decode(predicted_ids)
    batch["transcription"] = transcription
    return batch

result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["speech"])

print("WER:", wer(result["text"], result["transcription"]))

Wrap-up

If you are looking for other models unrelated to TensorFlow, feel free to play around with the filters to find what you are looking for. There are over 34,000 pretrained Hugging Face models available!

Feel free to contact us if you have any questions or take a look at our Deep Learning Solutions if you're interested in a workstation or server to install and run Hugging Face on.


Tags

hugging face

nlp

ai

tensorflow

machine learning

computer vision

gpt2

bert



Related Content